Login

CAPA_ROLF LINES - 1993-10-October

Primary Reflexes and Structural Typology

"You must remember that in appreciation of a body what you are looking for at is the relationship between flexors and extensors" Ida Rolf
Pages: 37-47
Year: 1993
Dr. Ida Rolf Institute

Rolf Lines, October 1993 – Vol. XXI nº 03

Volume: 21
"You must remember that in appreciation of a body what you are looking for at is the relationship between flexors and extensors" Ida Rolf

This article will introduce a new-more neuro biologically oriented-way to look at structural typology. Before doing so I will relate it to other already existing typologies in our field.

Currently there exist two structural typologies in the field of structural integration which have been published and have influenced the official teaching of our faculty: the Sultan external/internal model and the Flury model of his 4 types (regular external/ locked knee internal/ regular internal/ symmetrical external). Both systems have served as very valuable tools to differentiate our perception for structural differences and more differentiated working options. Jan Sultan’s model (as published in the Notes on S.I. 86/ 1) uses femur rotation as the key indicator and is based on the cranio sacral breathing -mechanism as the theoretical driving force. Hans Flury’s typology (Notes on S.I., 89/1 & 90/1) uses pelvis position (shift & tilt) as the crucial key factor and the effect of gravity in the standing position on the tissues of the client as the theoretical driving force for his described structural differentiation.

In working with both systems for several years now I. have found GREAT insight and practical usefulness in both of them. The only theoretical difficulties or shortcomings those two models had for me can be briefly described:

The assumption of Sultan’s model that the very minute craniosacral breathing mechanism would be the primary driving force for such gross changes like pelvic tilt, chronic spinal extension, ribcage inflation, etc., is difficult to imagine. Compared with respiratory breathing the craniosacral pulsation is supposed to be at least hundred times smaller. Both movement cycles are of roughly similar frequency, and of course steady repetitions of small forces can eventually move mountains. But it still would seem more likely that the respiratory breathing pattern would influence ribcage and trunk patterns more than its hundred times smaller companion.

Other difficult items to understand in Sultan’s model are the positions of the feet. Most medical statistics report a higher correlation of valgus feet with valgus knees (pronated foot with X-legs) and of pes varus and genu varus (supinated feet and O-legs) as compared with their opposite combination patterns. And this seems to fit to most body workers experience. In contrast to this Sultan’s structural theory claims the combination of pes varus with genu valgus and of pes valgus with genu varus as the “congruent” patterns. This seems to be not explainable with gravity’ but mainly from Sultan’s proposed energetic “transmission lines” (which are still hard to understand in clear anatomical or physical terms for me).2

Flury’s system seems to assume that the force of gravity which is influencing the body structure over time finds the clients body most often in the standing position with the pelvis shifted and tilted in her or his particular Rolfing standing pose pattern. Flury’s theory would be the appropriate model to understand the long-term gravitational effects in the honorary soldiers who are standing in a modified Rolfing stance all day in front of London’s Buckingham Palace. But for most of my current clients sitting is much more common than standing. And: the habitual pelvis position in sitting is generally quite different than in standing. E.g. clients with a clear anterior pelvic tilt pattern in standing often sit more posteriorly tilted than those with a less anterior pelvic tilt in standing. Then the resulting long-term effect of gravity on them is of course quite different than Flury’s typology describes.

Additionally Flury’s description of “primary” and “secondary shortness” doesn’t seem to differentiate between myofascial length and myofascial tonus enough. But length and tonus are very different features. Depending on joint position and gravitational forces a myofascial unit can be in either one of those four combination patterns: short & soft, short & tight, long & soft, or long & tight. So what Flury calls “primary shortness” (e.g. in the front of the chest in clients with a kyphotic ribcage pattern in standing, or for example in the hip joint flexors in an internal type person) could be either one of the following two very different structural patterns:

1) In some clients those shortened myofascial structures are very relaxed or one could say they are simply collapsed into this position without a tightening of those myofascial connections (i.e. short distance & low tonus). One can recognize this often quite easily, that when lying down those shortened connections lengthen without any resistance. E.g. then the kyphotic ribcage pattern’ or the pelvic tilt changes by itself as soon as they lie down.

2) This is of course structurally quite different to those people where the kyphoticribcage pattern or the lumbar lordosis shows up also when they lie down comfortably relaxed on their back on an even table. In those people the shortened fibres are chronically actively contracted (i.e. short distance & high tonus).

Since those two situations are very different it makes sense to treat them also with different manual working approaches as will be shown later in this article.

All typologies-especially if they are very congruent or brilliant-have a danger of narrowing our perception to certain features and to ignore all other possible perceptions. Gregory Bateson once said: “all typologies are misleading”. This seems to be specially the case the more one is convinced or sure of a particular model, or where the model or its originator is treated with severe emotional respect. When a model is taken more light-heartedly, or when one is comfortable to use different even contradictory models as temporary stimulation for ones perception, then they tend to be much more useful and even powerful devices.

Gladly for us the two major typologies in our school are still very young and none of them seems to be congruent or enticing enough to have seduced us as a group to develop a missionary tunnel vision perspective, (although this danger-given some time-could naturally increase in some of us in the future).
This seems to be an appropriate time to introduce another typology as an additional stimulation for our school. If this new typology helps us to avoid taking any of the existing models too much as a dogma in our future teaching, then it will give us the advantage of having more options of looking and of understanding the various factors that determine individual human structures.

This new model is oriented at understanding the NEUROBIOLOGICAL components of individual human structures. It is based on the following three premises:

A Dynamic Definition of Structure

As opposed to a static definition of structure (geometrical arrangement of segments of a body in a certain rare standing pose) this definition looks at the most common movement habits of a person. Posture (e.g. in sitting or standing) is seen as movement too.

This concept of human structure goes along with the understanding of the Nobel prize winner Ludwig van Bertalanffy who was strongly opposed to applying a clear cut division line between structure and function (as is usually appropriate in mechanical systems like a machine) to biological systems, when he said: “This separation between a pre-established structure and processes occurring in that structure does not apply to living organisms. For the organism is the expression of an everlasting orderly process … What is described in morphology, as organic forms and structures, is in reality a momentary cross section through a spatio temporal pattern. What are called structures are slow patterns of long duration, functions are quick processes of short duration. “3 In the proposed neurobiological model for Structural Integration “structure” then is defined as the most permanent movement habits of a person at this period of their life. So the difference between function (like shrugging the shoulders for a second as a communicative gesture) and structure (like a chronic tendency to almost always tighten the pelvic floor since early childhood) is just a difference in time, or the question: “how permanent or how repetitive or how common is this feature in this persons daily average body usage?”

For the static definition of structure it is possible to give some structural evaluation just from looking at a static photograph. With the proposed dynamic structure definition one needs to see the person in several different aspects (e.g. walking, standing, sitting down, lying prone/ supine, etc.) for a visual structural evaluation .4

The Primacy of the Nervous System in Motor Co-ordination

The bones usually don’t do anything which the muscles don’t tell them to do. And the muscles usually don’t do anything which the nervous system is not telling them to do. That means for the most part movement (and postural) habits are directed from the nervous system. (As pointed out earlier’ studies of bodies under anesthesia have shown two interesting results for us Rollers: first, that most of the structurally important myofascial restrictions are temporarily gone under anesthesia; and second, that the tissue of anesthetized bodies doesn’t respond much to Rolfing manipulation work. Both findings support this second assumption of the primacy of the nervous system in our work.)

A Developmentally Oriented View of the Evolution of Individual Structure

Most of the characteristic movement habits (and postural habits) of a person that allow us to distinguish that person from others (e.g. when seeing someone from far away and after not having seen that person for a long time) have been gradually developed over their lifetime, with most of the development happening in their early years (before the end of puberty). Therefore it is useful to look at those factors that influence motor organization in the early individual developmental process and which can lead to structural differences between people in later life. This developmental viewpoint will pay special interest to common evolutionary (phylogenetic) as well as embryological (ontogenetic) processes.

This model looks at two primary reaction patterns that are also sometimes called reflexes: the ‘Landau Reflex’ as basis for a chronic shortening of most genetic extensor muscles and the ‘Startle Reflex’ as a basis for a chronic shortening of most genetic flexor muscles. It is suggested that the two mentioned reaction patterns involving those two opposing sets of muscles-the genetic extensors and the genetic flexors-can be understood as important forces influencing adult human structures.

To explain the terms ‘genetic extensors’ and ‘genetic flexors’ a brief look at our embryological development is helpful. Fig.1 shows the position of a 5 week old embryo with all extensors on the dorsal side and the flexors on the ventral side. As one can see our legs first appear as buds coming out of the lateral sides. At around 6 weeks the elbow and knee joints are formed. Then the elbow joint fold as well as the knee fold are facing ventral (!) with all flexors facing that side too. This is the same situation in adult reptiles and amphibians who have all their flexor muscles facing ventrally. In mammals-and in human embryonic development after the 7th week-the legs have rotated medially; and even later in we bipeds the original flexors of the leg are now arranged on the dorsal side of the leg as well as the plantar surface of the foot (see Fig.2).

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-1.jpg’>
Fig.1: Medial rotation of legs before birth. A at 5 weeks, B at 6 weeks, C at 8 weeks

The genetic extensors and genetic flexors are designed as very different types of muscles; different neurologically, functionally, and morphologically. They are enervated from different areas of the spinal cord. The extensors are dominantly equipped with slow twitch fibres (type I or ‘slow oxidative fibres which are called tonic fibres and are usually quite thin). They don’t tire so fast, and they are more dark meat’ colored. Whereas the flexors have a lot of fast twitch fibres (type IIb or ‘fast glycolytic or tonic fibres) which are usually much thicker and can act fast but also tire fast and which are more ‘light meat’ colored.6

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-2.jpg’>
Fig.2a: topography of genetic extensor tissues
Fig.2.b: topography of genetic flexor tissues

Genetic Extensor Muscles
-mainly tonic muscles with a lot of slow twitch fibres (Tyoe I or slow-oxidative fibres), red meat color
-enevervated from ventral part of anterior horn of spinal cord
-originally arranged dorsally
-now located on dorsal side of trunk and arms (in anatomical position), on ventral leg and plantar side of foot

General Flexor Muscles
-mainly phasic muscles with a lot of fast twitch fibres (Type IIb or fast glycolytic fibres), white meat color
-enervated from dorsal part of anterior horn spinal cord
-originally arranged ventrally
-now located on ventral side of trunk and arms (in anatomical position), on dorsal leg and dorsar side of foot

Here’s a list of muscle groupings into those two categories: 7.

Genetic Extensors

Primary:

-Erector spinae (incl. head and neck extensors) plus levatores costarum

Secondary:

-all arm muscles enervated by the radial nerve (e.g. triceps, brachioradialis, supinator, all extensor muscles of lower arm, wrist and hand)

-all muscles enervated by the common peroneal nerve (the extensor compartment of the lower leg, plus peroneals’, plus ext.dig.brevis)

-quadriceps & sartorius9

-subscap., latissimus & teres major

Associated:

-trapezius pars descendens

-scalene

-deltoid

-all muscles enervated by the gluteal nerve: glut.max, glut.med.&min, and tensor f.l.

-the deep six rotators of the hipjoint (except the obt.ext.)

-the levator ani 10

Genetic Flexors

Primary:

-rectus abdominis with infrahyoids (and sternalis, if present)11

Secondary:

-all muscles enervated by the N. musculocutaneus, the median or the ulnar nerve (i.e. all other arm and hand muscles besides those enervated by the radial nerve)

-all foot muscles enervated by the tibial nerve (triceps surae, the three deep flexors in the lower leg, as well as all intrinsic foot muscles-except the ext.dig.brev)

-the three hamstrings (except for the short head of the biceps fem.) plus the portion of adductor magnus which inserts into tuberculum adductorum12

-the pre vertebral neck muscles and subclavius

-the upper part of the pect.major

-the iliopsoas

-the lateral bellywall (obl.ext., obl.int. & transv.abd) and the internal intercostals with the transversus throracis13

Associated:

-the adductors”‘ (including the adductor magnus with the portion inserting on the linea aspera)

-the serratus ant.

-lower part of pect. maj., pect. min.

-the upper part of the trapezius, and the sternocleidomastoideusl15

Short Extensor Pattern

When holding a six month old baby unexpectedly into pen space only supported with its belly on your hand, it will most likely react with the so-called “Landau Reflex”, which is an active shortening of most genetic extensor muscles (See Fig.3). It lifts its head, arcs its trunk backwards and extends the legs. This does not happen normally with much younger babies and therefore this reflex reaction is used as a standard neurological test for the development of the baby.

Already at about 3 months a healthy baby learns to use the extensors of the neck and upper back to lift its head when lying prone in order to more actively meet the outside world around. This seems to be a genetically programmed function also as a first element for the functions of walking and standing. Learning to arc the back with the lower erector spinae comes later, usually about 5 months. Then the baby is usually also able to lift its legs and arms as well as arcing the whole back, which is the basis of the Landau Reflex as an important gravitational response.

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-3.jpg’>

In some people this muscular pattern becomes a chronic habit which then shapes their overall posture and movement patterns. Thomas Hanna describes this reflex as “Green Light Reflex” to indicate the psychological state of preparedness or readiness for active interaction with the environment which accompanies this Landau Reflex. He writes “The Green Light reflex is assertive; its function is action.”” If somebody’s posture is dominantly shaped by this reflex-or one could say by this attitudes’-it will become a chronic feature and show in a shortening of the genetic extensor muscles.

The Short Extensor Pattern in standing looks like this:

Primary features:

-Most clearly the trunk erectors will extend the spine and trunk.

-The trunk extension and shortening of the dorsal muscles of the trunk will tend to support a igh chest and inspiration fixated ribcage pattern.

-A higher tonus of the dorsal usculature of the pelvis than on its ventral side will tend to pull the pelvic bones into a more out flare pattern with narrow tuberosities and a wide diameter in front between the ASIS of both sides.

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-4.jpg’>

The leg extensors will clearly rotate the femora externally (due to the medial spiralling rotation that the legs underwent in our embryonic life and which the original hip extensor muscles still follow).

Secondary features:18

-In many cases the short hipjoint-extensors will pull the pelvis into an extended hipjoint pattern (i.e. posterior pelvic tilt).”

-The shoulder blades will often be drawn backwards.20

-The extensors of the lower leg and foot will tend to increase a pronated foot pattern.

-Often the high tonus of the deltoids will abduct the arms chronically.

-Often the high tonus of subcap/lats/teres maj. will rotate the humerus internally.

-Besides abduction of the arms there is often also a tendency for increased abduction of the legs (triggered by high tonus of the leg abductors).

The Short Extensor Pattern puts people usually more upright. This puts them in a more economical position than most random structures. Additionally the genetic extensors are much better equipped for chronic work than the flexors since they are dominantly composed of slow oxidative fibres. Therefore one could expect that those people don’t seem to be as tired as the Short Flexor types. This might be aided by the bigger vital capacity in breathing which tends to be able to supply more oxygen for the brain and body. The underlying chronic attitude of “being ready for action” will often be expressed in a more extroverted personality (but of course not always since other factors might influence this too). A recently published study showed that this posture tends to increase people’s sense of self worth or how proud they feel about themselves .21 In the extreme-when the extensors are chronically severely contracted-people can become stiff and rigid, like in what Ida Rolf called the classical military posture (see Fig.4).

The Short Flexor Pattern

When frightening a mammal with a sudden loud sound or sudden painful stimulus it will show a “Startle Reflex which has been researched extensively (and often painfully) in scientific laboratory studies. Robert Eaton’s book “Neural Mechanisms of Startle Behavior”22 describes several studies showing a quite uniform muscular reflex pattern in mammals, which always involves a dominance of genetic flexor contraction.23

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-5.jpg’>

Fig. 5 shows how a human embryo reacts to sudden painful stimulation by curling up more. High-speed photography of adult humans during for example a sudden loud noise reveals the following uniform pattern (see Fig.6):

-After an initial facial reaction by the jaw and eyes (after already 14 – 20 msecs);

-the shoulders come up via the upper fibres of the trapezius and the head moves forward (25-40 msecs).

-Next thing is a bending of the elbows (60 msecs);

-followed by contraction of the abdomen and finally bending of the knees (145-400 msecs).

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-6.jpg’>

It is suggested that a chronic Short Flexor Pattern is often associated with this Startle Reflex as a habitual neuromuscular pattern. Taking the anatomy of the genetic flexors into account the Short Flexor Pattern will look like this:

Primary features:

-It is characterized most clearly by a trunk flexion or kyphotic ribcage pattern

-The ribs will be in a chronic expiration pattern with a collapsed or sunken chest.

-The femora will be less rotated externally.

-The shoulder blades will be drawn forward by the pectoralis major and minor in front.

-The pelvis will be more often in an inflare pattern with a narrow diameter between both ASIS in front and wide tuberosities in the back.

Secondary feature:

-In most cases the hipjoint flexors will tend to tilt the pelvis anterior.

-The lower leg and foot flexors will tend to supinate the foot (high arch)

-The upper portion of the trapezius will elevate the shoulders.

-legs and arms will tend to be more in a adducted position.

Let’s look at the knee positions in terms of genu valgus (X-legs) and genu varus (0-legs), which are defined anatomically by a shorter distance between femur and lower leg along the medial side (varus) or lateral side (valgus)24. From their history (i.e. medial rotation of the leg in embryonic life) it is quite clear that the medial leg muscles of the thigh and lower leg today are more closely related with the original flexors. They used to be more in the front with the knee flexors and they still tend to act more like flexor type muscles. Whereas the lateral leg muscles used to be more in the back and are more closely related with the original extensors. In a Short Flexor Pattern the increased tension between thigh and lower leg along their medial connections will over time tend to shift the knee joint towards valgus (0-legs). This will also be supported in standing and walking by the increased gravitational compression across the medial side of the knee because of the support of the supinated foot pattern underneath (see Fig.7). Whereas in the Short Extensor Pattern the increased tension along the lateral connection of lower leg and femur together with the pronated foot support underneath will lead more often toward the valgus (X-)leg pattern of the knees.

The psychological and energetic tendencies of Short Flexors are best described by Ida Rolf: “There is another factor in upright stance besides evolution. This factor makes Feldenkrais candidate for the title of a really intuitive researcher. He saw that negative emotion strengthens flexors. My recognition out of my own life is such that such an overwhelming amount of emotional experience is negative. And when you experience negative emotion, you respond with a flexor every time you flex, always you are flexing … Feldenkrais called attention of the fact that all negative emotional expressions are accompanied by a shortening of flexor muscles. The energy in a chronically flexed body has to work just to hold up; the man continuously has to add energy to that body to keep it going. Such chronic flexion gives a feeling of ‘depression’.”‘,’ When studying Feldenkrais’ original description in ‘Body and Mature Behavior’ we see that he calls this Short Flexor pattern “the body pattern of anxiety”. Besides a contraction of flexors (especially of the abdominal region) he described for this pattern an “inhibition of the antagonistic extensors” as well as a “halt in breathing” 26

What moved Ida Rolf to describe the underlying neurology of Short Flexor people with this much wider term “bad emotions”-compared with Feldenkrais’ more specific term “anxiety”? I suspect that she felt that there are also other emotional reaction mechanisms besides the startle reflex that can be a neurological basis for this pattern. In my experience it is often useful to differentiate two types within the Short Flexors: a contracted and a collapsed type. In the contracted type the flexor muscles are not only shortened but also tight (short distance & high tonus). In lying supine on a table one can usually find a lot of free space behind their lower neck, their shoulders, and often also behind their lumbars. They have very little inter segmental mobility of their ribcage and fit probably best into Feldenkrais’ description of a chronic “pattern of anxiety”.
?
<img src=’https://novo.pedroprado.com.br/imgs/1993/407-7.jpg’>

Opposed to those are Short Flexor people in which the flexor muscles are not actively tightened but are just collapsed (short distance & low tonus). Like in the contracted type the antagonistic extensor muscles of the trunk are lengthened and because of the harder work against gravity than in a more upright posture-tightened in standing (i.e. long distance & high tonus). When lying on a table the thoracic kyphosis disappears easily and their ribcage still has a lot of mobility. I commonly call this version the ‘Short Flexor Collapse type; but it would have also been possible to call it ‘Long Extensor type’. I suspect that this muscular pattern is not so closely related to the anxiety pattern of the startle reflex but to a neurobiological feature described as “Postural Collapse”. Postural Collapse has been studied extensively as a typical primate reaction to early maternal deprivation.” They found again and again that an early separation of young chimpanzees from their mothers (e.g. by a glass partition in the cage) would soon lead to this feature of ‘Postural Collapse’ (plus other metabolic and neural changes). See Fig.8.28 This seems to be typical for mammals and specially for primates. I speculate that such a trauma of not having got enough emotional/tactile “nourishment” might often be the basis for this collapsed version of the Short Flexor pattern.

<img src=’https://novo.pedroprado.com.br/imgs/1993/407-8.jpg’>

So looked at closer this neurological model could be seen as three different types related to three different primary reaction patterns: Short Extensor type (based on a Landau Reflex), Short Flexor Contraction type (based on the startle reflex), and Short Flexor Collapse type (based on the primate ‘Postural Collapse’ reaction). The last two types look very similar from the outside with the same outer form and contour changes, but seen from the inside one can recognize different tension patterns and different neurobiological driving mechanisms underneath them.

Hubert Godard inspired me a lot by relating the Extensor types to the “fight” response and the Flexors to “flight”. Each basic type seems to have organized around one of those two biological response patterns, and to have lost some of the useful capacity to react with the other response; meaning that the Extensors are always well prepared to fight even when that is not the most useful response, and the Flexors not as well prepared to fight but rather to run away or to shrink and hide, even when a more assertive response would be more useful. The goal of Rolfing would then be to enable the body organization of the client to have both options-fight and flight equally available with the same ease when they are appropriate.

For those familiar with Hubert Godard’s work, it is quite obvious that his PUSH (or ‘down’) type corresponds closely to the Short Extensor pattern, and his REACH (or ‘up’) type to the Short Flexor pattern. The primary genetic extensors will tend to hold the upper body of Short Extensor people more backwards in walking and standing, whereas a shortening of the primary genetic flexors (i.e. rect. abd. and infrahyoids) will tend to hold the upper body comparatively more forward. The above described patterns of femur rotation and limb abduction/adduction for the Short Extensors and Short Flexors fit also very well with his observation.

It is tempting to speculate about the reasons why one persons structure seems to be dominantly shaped by one of those reflex patterns and another person’s structure by a different one. It could be that this is based on particular circumstances in the person’s history that triggered one of those reflex patterns more strongly. The interactions with the environment can be such that one biological response pattern-fight or flight-is experienced as being more successful. If this happens repetitively in childhood-or if it happens a few times but with a lot of emotional/ physiological significance-this could strengthen that neurological reflex pattern in the body over time. Notice that the choice if the fight response pattern is experienced as successful or not could depend as much on the inherent qualities of the individual (“nature”) than on the environment (“nurture”). In having watched about a dozen newborn kittens, I observed that already from their birth several of them seemed more sturdy, with early neck extension (head up), more abducted limbs and a more extroverted and adventerous behavior, while others seemed to be not as strong, with more abducted limbs and a much more shy behavior. Later influences (like a bad fall from a tree) could then change that to some degree (and in some instances even significantly), but nevertheless, many of them seemed to be equipped with a newborn inclination towards one of those reflex patterns. When I presented this at the last Annual Meeting, Anne Koller told me that based on her background as a pediatrist (and now also Rolfer) she observed that already in premature born babies some of them are more flexion dominated with abducted limbs and display more introverted behavior while others are comparatively more extension oriented with more adbucted limbs and more extroverted behavior. This would mean that those differences are genetic inclinations. Seeing my kittens grow older I could watch how-depending on the environment-in some instances the shy ones were more successful, and in other instances the courageous ones. (And at the very end it was only the shyest one that survived … in this sad story.) This would mean that both of these patterns are basically “good”. But both have their advantages and disadvantages. This means for me that if a client is dominantly shaped by one of those patterns my goal is not to change him into a different type, but rather help him to diminish the disadvantages of that pattern.

Different Manual Working Approaches with Different Neurobiological Body Types

-With Short Extensor Pattern people it helps to know that in general the genetic extensor muscles are much more densely enervated with Golgi receptors than the flexors. So it makes sense to use more of our traditional “direct technique” or slow but persistent “melting or Golgi stretch approach when working with the extensor muscles. This makes also sense when taking into account that their trunk extensor muscles are short & tight, so a clear message along the lines of “You fibres, lengthen please!” makes actually sense.

Additionally it is specially useful to focus the emotional interaction (tactile, verbal & otherwise) on RELAXATION, to help them to increase their ability to let go instead of being “always prepared for action” without any real pause.

-In a Short Flexor Pattern it is often useful to not only work with the shortened flexor muscles but also with the extensor muscles of the trunk which are long but tight (or at least tired), in order to seduce them to shorten more effectively. But here a traditional melting work along the lines of “Lengthen please” does usually work not as well with those trunk extensors. It makes more sense to use indirect technique and/or stimulating touch to communicate something like” Hey nervous system, please re-evaluate what you are doing right here with those joints. Maybe you want to change something or be more present here”. Another way to put it is to ‘VITALISE those myofascial tissues more. You want to influence those muscle fibres so they shorten (and not lengthen!) more in order to be able to work less hard.

-With a Short Flexors Contraction Pattern it is additionally advised to do some “lengthening work” on the shortened flexors. But since those muscles don’t contain as many Golgi receptors compared with genetic extensor fibres I suggest to address them additionally with indirect technique besides with our traditional direct Golgi tissue stretch type of manipulation. Emotionally it is often good to focus on “SAFETY” in the interactions with the client in order to give new options away from any anxiety pattern underlying the startle reflex mechanism.

-In a Short Flexors Collapse Pattern it often works best to focus more on stimulation and vitalization of their WHOLE neuromuscular system (instead of getting too much focused in detailed structural logic in a search for any chronically contracted tissues) It often works well to be aware of the nourishing factor of human touch when looking for ways how to bring “more life” back into their system, and to use that tool as effectively as possible. Sometimes this might include giving strong and vigorously stimulating touch in order to achieve this. Active client movement participation also contributes to this very well. So besides subtle micro movement participation I often involve them in participating with more active movements, where they stretch, or move against my resistance while we work. Also postural education works very well and can often do wonders with those types, since there are no chronic tissue restrictions to overcome.

Conclusion

It is hoped that this model helps to stimulate your perception to take into account more neurobiological factors involved in human structure. The author cannot take much credit for the development of this “third model”, since basically all elements have been described before (mostly by Sultan, Hanna, Feldenkrais). When comparing the above description of the Short Extensor type and the Short Flexor types with the geometrical description of the two Sultan types it is obvious that there are about 80% congruence; i.e. the Short Extensor type corresponds closely to the Sultan external and the Short Flexors to the internal. The main feature which is clearly different are the lower legs and feet. Therefore it is justified to give most credit to Jan Sultan for the refined development of his model underlying this newly proposed typology as a solid and most crucial foundation. It is further obvious that Sultan’s model is based on an enormous amount of clinical experience. It would have been possible to present this neurobiological model just as a modification of the Sultan model, since it consists basically of his descriptions minus the lower legs & feet, minus the craniosacral driving mechanism, and minus the energetic transmission lines. But since especially the last two items might be crucial factors of Sultan’s model, this would have not been very appropriate or even respectful. Therefore I chose to present the above article as a “new” way to look at structural differences between people.

A major difference of this model to both the Sultan and the Flury model is that the two described types are not exclusive of one another. Sometimes the two reflex patterns Short Extensor and Short Flexor Contraction can overlay each other, sometimes even in the same body segment. The poor person’s ribcage is then not only chronically tightened from the back but also from the front 29.

Key indicator for the reflex patterns is not the pelvis position in standing (like in Flury’s model) nor the femur rotation (like in Sultan’s), but the tonus balance between trunk-flexors and trunk extensors, specially around the ribcage. In Short Extensors the main mobility limiting elements for the ribcage are the tight extensors in the back; in Short Flexors Contraction types it is the tight flexors in the front; and with the Short Flexors Collapse types there is free trunk mobility with a sunken and collapsed (but not tightened) chest in front.

It is clear that postural typologies are arbitrary ways to divide a continuum. One can easily divide the cake into two slices, or twelve, depending how many distinctions one wants to make. The proposed way of eating the cake in two big portions (and calling one of them Short Extensor type and the other Short Flexor .type) and then eating the second one of those portions in two different styles is suggested as a useful tool to include more neurobiological factors into our work. But there are other ways to divide the cake. One of them was suggested by the American humorist Ogden Nash who once said:

“There are two kinds of people: those that believe that there are two kinds of people, and those that don’t.”

Footnotes

1 The “congruent” combination patterns of knee and ankle position of Sultan’s model actually go against the gravitational logic as outlined in Fig.7.

2 E.g. it seems clear that with an internally rotated femur pattern the daily movement of walking forward would support a more powerful myofascial development and tonus on the lateral quadriceps and the medial hamstrings. This fits to the energetic transmission lines of an internal type. But looked at kinesiologically this seems to be a secondary result and not a cause of the femur rotation. Since neither hamstrings nor quadriceps are effective hipjoint-rotators in standing, decreasing the tonus on those fibres would still have no mechanical effect on the femur rotation.

3 The exact original source of this quote is unknown to me. I got it from Peter Melchior. Thank you Peter!”

4 But as Peter Schwind once said, it might be possible for a very good computer to recognize structure (based on the proposed dynamic definition of structure) by analyzing the visual data of a person seen walking at a distance and by finding the most permanent or repetitive features in his or her movements.

5 See ROLF LINES Winter 1989 p.18; Apr./May 1991 p.18; March 1993 p.22

6 There are exemptions to this simple rule, like the presence of a high amount of tonic fibres in the soleus in humans. It is believed that most muscles have a genetically determined tendency towards growing more phasic or more tonic fibres, but exercise and daily usage have been proven to influence them too.

7 The following list include l Os as extensors muscles that are enervated via a dorsal primary ramus or the dorsal branches of the plexi, plus a few others which are clearly tonic muscles and act functionally like a genetic extensor. The list of flexors includes those enervated from the ventral branches of the plexi plus a few others which are clearly phasic muscles and act functionally like a genetic flexor.

8 The peroneals were displaced secondarily in the evolutionary process. Originally they passed anterior of the malleoli, as can still be seen in predators.

9 The sartorius is a good example for functional changes of a muscle in the evolutionary process. In us humans it functions now clearly as a flexor of the hipjoint as well as the knee joint. But from its ontogeny it is an extensor, just like the quadriceps, and still shares the same (femoral nerve) enervation with it.

10 It used to be believed in our school that the muscle group to which the levator ani is most closely connected would be the adductors. Anatomically this doesn’t make much sense since the adductors attach to the lateral side of the ramus and the pelvic floor quite far away from it to the medial side of the ramus. In fact the levator ani is fascially much more closely connected with the deep hip rotators via the obturator internus and the piriformis. It also shares the common enervation from the sacral plexus with this muscle group.

11 Originally there used to be one long ventral flexor column from the floor of the mouth down to the top of the pelvis (incl. the tissue to become the tongue). Of this the thoracal part mostly disappears in later embryonic development. See: Langman, J., Medical Embryology, Chapt.10

12 The long part of the adductor magnus (i.e. the part inserting into the tuberculum adductorium) is actually designed to work together with the medial hamstrings – neurologically, functionally, and anatomically because of the common epimysium in this area. That’s why it doesn’t make much sense when it is sometimes claimed by Rolfers that they “separate” the adductor magnus tissue from the hamstrings.

13 Note that the internal intercostals (which are expiratory assist muscles) are arranged more ventrally than the external intercostals which tend to be more focused in the back.

14 Across-section of the thigh with the lateral and medial intermuscular septi dividing the leg into genetic flexors and genetic extensors shows quite convincingly that the adductors belong to the flexor compartment. Only for the pectineus who shares its additional femoral nerve enervation with the quadriceps it not so clear to which genetic group it belongs more closely.

15 Trapezius and s.c.m. used to be one single muscle in early embryonic life, which then split laterally into those two parts. They are still enervated by the same (11th cranial) nerve.

16 Thomas Hanna, Somatics, p.65

17 The German word “Haltung” beautifully relates to both aspects; it means “posture/tension pattern” as well as “attitude” in English language

18 The term does not relate to secondary flexor muscles above. It simply indicates that those features are not as obligatory or common than the above primary ones (but they still tend to be more common than their opposites in this structural type).

19 What’s happening to the lumbars and pelvis in the upright standing position depends on which of the two extensor groups acts more powerful: the hipextensors or the lumbar erector spinae. In the majority of the Short Extensor Pattern people the shortening of the strong hipextensors (which was very useful in the childhood task of “standing up” into full biped stance and which seems to be aided by the “Let’s go for it” -attitude of this reflex pattern) shapes the pelvic tilt more than the tonus of the lumbar erectors. But this is not always the case and therefore this feature is not as uniform as the trunk extension for this reflex type.

That the lumbar erectors are normally not as significant for the standing posture as the hipextensors might be supported by the anatomical fact that there are not many contractile muscle fibre’s in the lumbar area of the erector spinae. Besides the multifidus most of the erector spinae muscles are totally white or tendinous in this area; which is of course very different in higher areas of the spine where we find a lot of red muscle fibres of all the really powerful erector spinaemuscles.

20 The muscles retracting’ the scapula developed out of the early extensor tissue of the myotomes of the arm. They are not as clearly genetic extensors as the erector spinae, but they are more closely associated with the genetic extensors than with the flexors.

21 Strack, F., Journal of Personality and Social Psychology, 1993. In this brilliant double blind study the participants were unknowingly induced to assume a collapsed or upright posture just by the respective arrangement of furniture. Simultaneously they were given the (wrong!) information that they had just achieved unusually high grades at a mental test just done before. The upright sitting “winners” reported in their questionnaires that they felt very proud about their achievements; whereas the slumped sitting winners were not so much impressed about their achievements.

22 1984 Plenum Press, New York

23 Although sometimes an extension of the front and hind limbs may occur in some mammals (e.g. in rats and guinea pigs). But even then it is usually followed by a generalized flexion of the whole body into a “hunched position”. The probability of this extensor involvement is higher after voluntary or ongoing extension. I also found it interesting to note that even in those rats, “as habituation proceeds, extension seems to drop out leaving mostly flexion” (Eaton, p.293).

24 Some bodywork practitioners tend to believe that X-legs are caused by short adductors and 0-legs by short abductors. But this doesn’t hold much ground when one tests this by moving the leg in the lying position; since then it is clear that adduction or abduction of the thigh doesn’t influence the X- or 0-leg pattern of the knees.

25 Ida Rolf Talks, p.133-134

26 p.83, 94

27 for example by Martin Reid of the Univ. of Colorado Medical Centre. But there have been also several other studies in which they separated young chimpanzees from their mothers to study postural and other effects of maternal deprivation on young chimpanzees.

28 Drawings for this article by Manianna Pavlidou. Some of them were inspired by already published illustrations: Fig.3 by T.Hanna, Somatics, page 64; Fig.4 by D.Johnson, The Protean Body, p.78; Fig. 6 by Eaton, Neural Mechanisms of Startle Behaviour, p.290; Fig. 8 by a video tape titled “A Touch of Sensitivity” by the National Science Foundation, BBC 1980.

29 Where as the Short Flexor Collapse pattern and the Short Extensor pattern would be seen as antagonistic.

To have full access to the content of this article you need to be registered on the site. Sign up or Register. 

Log In